WAVE DISPERSION IN DEEP MULTILAYERED DOUBLY CURVED VISCOELASTIC SHELLS

C. Ossadzow, P. Muller and M. Touratier
Laboratoire de Modélisation et Mécanique des Structures, U. R. A. no. 1776 C. N. R. S., U. P. M. C./E. N. S. A. M./E. N. S.-Cachan, Box 161, 4 place Jussieu, 75252 Paris Cedex 05, France

(Received 31 January 1997, and in final form 20 February 1998)

Abstract

This study is concerned with the dispersion of axisymmetric and asymmetric plane waves in viscoelastic cylindrical shells. The originality of the approach lies in the use of a refined laminated shell theory that allows one to satisfy exactly the boundary conditions for displacements and transverse shear stresses, while, at the same time, refinements of membrane and shear terms are considered. By comparison with previous theories, light is shed upon the advantage of using such a refined model to determine the dispersive behaviour of structures. The shell model is then applied to a viscoelastic cylinder, for which frequency and phase velocity spectra are presented. In order to point out the influence of viscoelasticity, especially as concerns phase velocities, comparison is made with the equivalent elastic case.

© 1998 Academic Press

1. INTRODUCTION

Deep shells of laminated composite materials are being increasingly used in structural applications. Yet, despite the modelling of such structures having been the object of numerous studies over the past few years, there are not many theories that simultaneously satisfy compatibility conditions for displacements and shear stresses at layer interfaces, and on the bounding surfaces of the shell.

This paper presents a new approach for developing a simple and refined theory for deep, doubly curved laminated shells, which allows one to satisfy exactly the continuity of transverse shear stresses and displacements at layer interfaces, while, at the same time, the membrane and shear terms are refined. The theory contains the same independent generalized displacements as in the shear deformation theory, and is based on a new assumed displacement field in which refined transverse shear and membrane deformations are represented by trigonometric functions. This is justified from a three-dimensional point of view in plates. Moreover, the introduction of trigonometric functions in the adopted form of the displacement field allows one to recover previous theories by developing the sine and cosine functions to various orders. Mindlin's [1], Naghdi's [2] and Koiter's [3] theories can thus be obtained. The objective of this research, which extends previous works by Touratier [4-6], and Touratier and Béakou [7, 8] is to develop efficient (i.e., simple and accurate) tools to model composite structures. It is proved, by comparison with previous theories ([5, 9-11]), that the model yields accurate results without the use of transverse shear deformation correction factors.

The model is then applied to the exploration of the dispersive behaviour of a viscoelastic cylinder. An analysis of the axisymmetric and asymmetric modes is made, in which the effects of viscoelasticity are pointed out by comparison with the equivalent elastic case.

Finally, viscoelastic dispersion is exhibited, and it is shown that torsional waves are weakly dispersive.

2. THE MULTILAYERED SHELL MODEL WITH INTERLAYER CONTINUITY

2.1. GEOMETRIC SHELL CONSIDERATIONS

Let us consider an undeformed laminated shell of constant thickness h, consisting of a finite number N of orthotropic layers in a curvilinear coordinate system $\left(x_{1}, x_{2}, x_{3}\right)$; see Figure 1. The space occupied by the shell will be denoted V. The boundary of the shell is the union of the upper surface Ω_{h}, the lower surface Ω_{0}, and the edge faces A.

The interface between the i th and $(i+1)$ th layer is denoted by Ω_{i}, the distance between Ω_{0} and $\Omega_{i}, x_{3_{(i)}}$.

The reference surface, defined by $x_{3}=0$, coincides with the bottom surface of the shell Ω_{0}.

In this paper, the Einsteinian summation convention applies to repeated indices, where Latin indices range from 1 to 3 while Greek indices range from 1 to 2 .

A point M outside of the reference surface Ω_{0} being given, let P denote the point of the reference surface Ω_{0} closest to M. Covariant base vectors $\left(\vec{a}_{i}\right),\left(\vec{g}_{i}\right)$ and contravariant base vectors $\left(\vec{a}^{\prime}\right)$, $\left(\vec{g}^{\prime}\right)$ in the undeformed state of the shell are introduced:

$$
\begin{array}{cl}
\vec{a}_{\alpha}=P_{, \alpha}, \quad \vec{a}_{3}=\vec{a}_{1} \wedge \vec{a}_{2} /\left\|\vec{a}_{1} \wedge \vec{a}_{2}\right\|, & \left(\vec{a}_{1} \wedge \vec{a}_{2}\right) \cdot \vec{a}_{3}>0 ; \\
\vec{g}_{i}=M_{, i}, \quad\left(\vec{g}_{1} \wedge \vec{g}_{2}\right) \cdot \vec{g}_{3}>0, & \vec{a}^{\alpha} \cdot \vec{a}_{\beta}=\delta_{\beta}^{\alpha}, \\
\vec{a}^{3}=\vec{a}_{3}, \quad \vec{g}^{\alpha} \cdot \vec{g}_{\beta}=\delta_{\beta}^{\alpha}, & \vec{g}^{3}=\vec{g}_{3} . \tag{1}
\end{array}
$$

Here differentiation with respect to x_{i} is denoted by $\langle\langle, i\rangle\rangle$.
It is recalled that

$$
\begin{equation*}
M=P+x_{3} \vec{a}^{3} \tag{2}
\end{equation*}
$$

Figure 1. The geometry of the laminated shell.

The above equations ensure the following relations, due to Naghdi [2]:

$$
\begin{array}{cccc}
\vec{g}_{\alpha}=\mu_{\alpha}^{\beta} \vec{a}_{\beta}, & \vec{g}_{3}=\vec{a}_{3}, & \vec{g}^{\alpha}=-\mu_{\beta}^{\alpha-1} \vec{a}^{\beta}, & \vec{g}^{3}=\vec{a}^{3}, \\
\vec{g}_{\alpha}=g_{\alpha \beta} \vec{g}^{\beta}, & \vec{g}^{\alpha}=g^{\alpha \beta} \vec{g}_{\beta}, & \vec{a}_{\alpha}=a_{\alpha \beta} \vec{a}^{\beta}, & \vec{a}^{\alpha}=a^{\alpha \beta} \vec{a}_{\beta} . \tag{3}
\end{array}
$$

The components of the shifter tensor are denoted by

$$
\begin{equation*}
\mu_{\beta}^{\alpha}=\delta_{\beta}^{\alpha}-b_{\beta}^{\alpha} x_{3}, \tag{4}
\end{equation*}
$$

those of the curvature tensor by

$$
\begin{equation*}
b_{\alpha \beta}=\vec{a}_{\alpha, \beta} \cdot \vec{a}^{3} \tag{5}
\end{equation*}
$$

and the curvilinear mixed terms by

$$
\begin{equation*}
b_{\beta}^{\alpha}=-\vec{a}_{3, \beta} \cdot \vec{a}^{\alpha} . \tag{6}
\end{equation*}
$$

The surface metrics α_{1} and α_{2} are related to the $a_{\alpha \beta}$ coefficients via

$$
\begin{equation*}
\alpha_{l}^{2}=a_{l l} \tag{7}
\end{equation*}
$$

In the following, the curvilinear coordinates (or shell coordinates) are supposed to be orthogonal, and are such that the x_{1} - and x_{2}-curves are lines of curvature on the reference surface $x_{3}=0 ; x_{3}$-curves are straight lines perpendicular to the surface $x_{3}=0$. The values of the principal radii of curvature of the reference surface are denoted by R_{1} and R_{2}.

The distance $\mathrm{d} s$ between two points $P\left(x_{1}, x_{2}, 0\right), P^{\prime}\left(x_{1}+\mathrm{d} x_{1}, x_{2}+\mathrm{d} x_{2}, 0\right)$ of the reference surface Ω_{0} of the shell is given by

$$
\begin{equation*}
(\mathrm{d} s)^{2}=\alpha_{1}^{2}\left(\mathrm{~d} x_{1}\right)^{2}+\alpha_{2}^{2}\left(\mathrm{~d} x_{2}\right)^{2} \tag{8}
\end{equation*}
$$

where α_{1} and α_{2} are the surface metrics

$$
\begin{equation*}
\alpha_{l}^{2}=\left(\partial P / \partial x_{l}\right)\left(\partial P / \partial x_{l}\right) \tag{9}
\end{equation*}
$$

The distance $\mathrm{d} S$ between two points $M\left(x_{1}, x_{2}, x_{3}\right)$ and $M^{\prime}\left(x_{1}+\mathrm{d} x_{1}, x_{2}+\mathrm{d} x_{2}, x_{3}+\mathrm{d} x_{3}\right)$ outside of the reference surface is given by

$$
\begin{equation*}
(\mathrm{d} S)^{2}=L_{1}^{2}\left(\mathrm{~d} x_{1}\right)^{2}+L_{2}^{2}\left(\mathrm{~d} x_{2}\right)^{2}+L_{3}^{2}\left(\mathrm{~d} x_{3}\right)^{2} \tag{10}
\end{equation*}
$$

where L_{1}, L_{2} and L_{3} are the Lamé coefficients:

$$
\begin{equation*}
L_{1}=\alpha_{1}\left(1+x_{3} / R_{1}\right), \quad L_{2}=\alpha_{2}\left(1+x_{3} / R_{2}\right), \quad L_{3}=1 \tag{11}
\end{equation*}
$$

2.2. KINEMATIC ASSUMPTIONS

Geometrically linear shells are considered including elastic and viscoelastic linear behaviour for laminates.
The components of the displacement field of any point $M\left(x_{1}, x_{2}, x_{3}\right)$ of the volume occupied by the shell (V), expressed in the contravariant base $\left(\vec{g}^{\alpha}, \vec{g}^{3}\right)$, are assumed in the following form:

$$
\begin{gather*}
U_{\alpha}=u_{\alpha}+x_{3} \eta_{\alpha}+f\left(x_{3}\right) \gamma_{\alpha}^{0}+g\left(x_{3}\right) \varphi_{\alpha}+\sum_{m=1}^{N-1} u_{(m)_{\alpha}}\left(x_{3}-x_{\left.3_{(m)}\right)}\right) \mathrm{H}\left(x_{3}-\mathrm{x}_{\left.3_{(m)}\right)}\right) \\
U_{3}=\mathrm{w} . \tag{12}
\end{gather*}
$$

Here

$$
\begin{equation*}
f\left(x_{3}\right)=(h / \pi) \sin \left(\pi x_{3} / h\right), \quad g\left(x_{3}\right)=(h / \pi) \cos \left(\pi x_{3} / h\right) \tag{13}
\end{equation*}
$$

and H denotes the Heaviside step function, defined by

$$
\mathrm{H}\left(x_{3}-x_{3_{(m)}}\right)=\left\{\begin{array}{ll}
1 & \text { for } x_{3} \geqslant x_{3_{(m)}} \tag{14}\\
0 & \text { for } x_{3}<x_{3_{(m)}}
\end{array}\right\}
$$

This step function has been previously used, among others by Di Sciuva [12] and He [13] to analyze laminated shells in statics. The present work extends the use of the step function to dynamics.

In the proposed form of the displacement field, u_{α} are membrane displacements, γ_{α}^{0} are the transverse shear strains at $x_{3}=0$, and w is the transverse deflection of the shell. The $g\left(x_{3}\right) \varphi_{\alpha}$ terms are refinements of membrane displacements, the η_{α} and φ_{α} being functions to determine by exploiting the boundary conditions of the transverse shear stresses at the top and bottom surfaces of the shell. The $u_{(m)_{\alpha}}$, which represent the generalized displacements $\langle\langle p e r$ layer \rangle, allow one to satisfy automatically the continuity of the displacements at layer interfaces from the Heaviside step function. They are to be determined by satisfying the continuity conditions on the transverse shear stresses at the interfaces.
From a three-dimensional point of view, the kinematics proposed in equations (12), with the introduction of the sine and cosine functions f and g can be justified on the basis of the work of Cheng [14], who proposed a method for solving Navier's equations, in the case of thick plates. Cheng showed that there exist three distinct types of fundamental solutions, which will be denoted by $\vec{U}^{B}, \vec{U}^{S}, \vec{U}^{T}$, each one being the solution of a specific differential equation (here without any loading, for the sake of simplicity):
\vec{U}^{B}, which is the solution of the well-known biharmonic equation

$$
\begin{equation*}
\nabla^{2} \nabla^{2} \vec{U}^{B}=\overrightarrow{0} \tag{15}
\end{equation*}
$$

\vec{U}^{S}, the solution of a so-called shear equation, defined by

$$
\begin{equation*}
\left(\boldsymbol{\nabla}^{2}-(2 p+1)^{2} \pi^{2} / h^{2}\right) s\left(x_{1}, x_{2}\right)=0 ; \quad(p \text { being an integer }) \tag{16}
\end{equation*}
$$

and given by

$$
\begin{equation*}
U_{1}^{S}=\sin \left((2 p+1) \frac{\pi x_{3}}{h}\right) s_{, 2}, \quad U_{2}^{S}=-\sin \left((2 p+1) \frac{\pi x_{3}}{h}\right) s_{, 1} \tag{17}
\end{equation*}
$$

\vec{U}^{T}, the solution of the transcendental equation

$$
\begin{equation*}
\left(1 / \nabla^{2}\right)(1-\sin (h \nabla) / h \nabla) H\left(x_{1}, x_{2}\right)=0 \quad(H \text { being a stress function }) \tag{18}
\end{equation*}
$$

Hence, the final solution, in terms of displacements, is obtained via

$$
\begin{equation*}
\vec{U}=\vec{U}^{B}+\vec{U}^{S}+\vec{U}^{T} . \tag{19}
\end{equation*}
$$

The shear term in the present theory for plates is therefore naturally obtained by imposing

$$
\begin{equation*}
(h / \pi) \gamma_{1}^{0}=+s_{, 2}, \quad(h / \pi) \gamma_{2}^{0}=-s_{, 1}, \quad p=0 \tag{20}
\end{equation*}
$$

Moreover, the advantage of keeping γ_{α}^{0} functions in equations (12) allows one to find Mindlin's theory [1] by developing the sine at the first order.

In order to reduce the number of unknowns in the displacement field, the conditions on the transverse shear stresses at layer interfaces and on the bounding surfaces will be used in the following way. The transverse normal stress is ignored. It is assumed that no tangential tractions are exerted on the upper and lower surfaces of the shell.

2.3. THE LINEAR CONSTITUTIVE LAW

It is recalled that the coefficients of the constitutive law for each layer are generally given in a co-ordinate system related to the material of the layers (that shall be qualified as $\langle\langle$ material co-ordinates $\rangle\rangle$), whereas the authors presently deal with shell co-ordinates. In what follows, recall the link between the two coordinate systems.
By taking into account the zero condition on the transverse normal stress σ_{33}, the orthotropic constitutive law $\langle\langle$ per layer $\rangle\rangle$ can be written as follows in material co-ordinates, for the i th layer:

$$
\begin{gather*}
\sigma_{\alpha \alpha}^{(i)^{m a t}}=C_{\alpha \alpha \beta \beta}^{(\mathrm{i})^{\text {mat }}} e_{\beta \beta}^{m a t}, \quad \sigma_{\alpha \beta}^{(\mathrm{i})^{m a t}}=C_{\alpha \beta \alpha \beta}^{()^{m a t}} e_{\alpha \beta}^{m a t} \quad(\beta \neq \alpha), \\
\sigma_{\alpha 3}^{()^{m a t}}=C_{\alpha 3 \alpha 3}^{(i)^{m a t}} e_{\alpha 3}^{m a t} \tag{21}
\end{gather*}
$$

or, in a matrix form,

$$
\begin{equation*}
\left\{\sigma^{(i)^{m a t}}\right\}=\left[\mathbf{C}^{(i)^{m a t}}\right]\left\{\mathbf{e}^{m a t}\right\} \tag{22}
\end{equation*}
$$

Here:

$$
\begin{gather*}
\left\{\sigma^{\left(i^{m a t}\right.}\right\}=\left\{\sigma_{11}^{(i)^{m a t}}, \sigma_{22}^{(i)^{m a t}}, \sigma_{31}^{\left(i^{m a t}\right.}, \sigma_{12}^{\left(i^{m a t}\right.}, \sigma_{32}^{(i)^{m a t}}\right\}, \tag{23}\\
\left\{\mathbf{e}^{\text {mat }}\right\}=\left\{e_{11}^{\text {mat }}, e_{22}^{\text {mat }}, e_{31}^{\text {mat }}, e_{12}^{m a t}, e_{32}^{m a t}\right\}, \tag{24}
\end{gather*}
$$

are respectively the stress and strain vectors.
The (i) exponent refers to the (i) th layer, and the $\langle\langle$ mat \rangle exponent to the material co-ordinates.
The $C_{\alpha \beta \gamma \delta \delta}^{(i)}$ coefficients are t wo-dimensional coefficients, related to three-dimensional $C_{\alpha \beta \gamma \gamma \delta}^{(i) D_{\text {mat }}}$ ones via

$$
\begin{align*}
& C_{\alpha \alpha \beta \beta}^{(i) \text { mat }}=C_{\alpha \alpha \beta \beta}^{(i) D_{\text {mat }}}-\frac{C_{\alpha \alpha 33}^{(i) 3 D_{\text {mat }}} C_{\beta \beta 33}^{(i) D_{\text {mat }}}}{C_{3333}^{(i) D_{\text {mat }}}}, \\
& C_{\alpha \beta \alpha \beta}^{()^{m a t}}=C_{\alpha \beta \alpha \beta}^{()^{3 D_{\text {mat }}}} \quad(\beta \neq \alpha), \quad C_{\alpha \alpha 33}^{(i)^{m a t}}=C_{\alpha \alpha 33}^{()^{3 D_{\text {mat }}} .} \tag{25}
\end{align*}
$$

Let $\left(\vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3}\right)$ denote the spatial Cartesian system. A point M of the structure will be located by its co-ordinates $\left(X_{1}, X_{2}, X_{3}\right)$ in this system, which are functions of the curvilinear co-ordinates x_{α}.

The covariant and Cartesian vectors of the shell are related by

$$
\begin{equation*}
\vec{g}_{\alpha}=\partial \vec{M} / \partial x_{\alpha}=X_{\beta, \alpha} \vec{E}_{\beta}, \quad \vec{g}_{3}=\vec{E}_{3} \tag{26}
\end{equation*}
$$

or

$$
\left[\begin{array}{l}
\vec{g}_{1} \tag{27}\\
\vec{g}_{2} \\
\vec{g}_{3}
\end{array}\right]=[\mathbf{T}]\left[\begin{array}{l}
\vec{E}_{1} \\
\vec{E}_{2} \\
\vec{E}_{3}
\end{array}\right],
$$

where the coefficients of the rotation matrix [T] are given by

$$
\begin{equation*}
T_{\alpha \beta}=X_{\alpha, \beta}, \quad T_{i 3}=\delta_{i 3} . \tag{28}
\end{equation*}
$$

Denoting

$$
\begin{align*}
& \left\{\sigma^{\left(i^{\text {mat }}\right.}\right\}_{\text {plane }}=\left\{\begin{array}{l}
\sigma_{11^{\text {mat }}}^{\left(1^{\text {mat }}\right.} \\
\sigma_{2 \text { mat }}^{(i)^{m a t}} \\
\sigma_{12}^{(i)^{\text {mat }}}
\end{array}\right\}, \quad\left\{\sigma^{(i)}\right\}_{\text {plane }}=\left\{\begin{array}{l}
\sigma_{11}^{(i)} \\
\sigma_{22}^{(i)} \\
\sigma_{12}^{(i)}
\end{array}\right\}, \\
& \left\{\mathbf{e}^{\text {mat }}\right\}_{\text {plane }}=\left\{\begin{array}{c}
e_{112 t}^{\text {mat }} \\
e_{22}^{\text {mat }} \\
e_{12}^{\text {mat }}
\end{array}\right\}, \quad\{\mathbf{e}\}_{\text {plane }}=\left\{\begin{array}{l}
e_{11} \\
e_{22} \\
e_{12}
\end{array}\right\}, \tag{29}\\
& {\left[\mathbf{C}^{(i)^{\text {mat }}}\right]_{\text {plane }}=\left[\begin{array}{ccc}
C_{1111}^{(i)} & C_{1122}^{(i) \text { mat }} & 0 \\
C_{2211}^{(i)^{\text {mat }}} & C_{2222}^{(i)^{\text {mat }}} & 0 \\
0 & 0 & 2 C_{1212}^{()^{\text {mat }}}
\end{array}\right],} \\
& {\left[C^{(i)^{\text {mad }}}\right]_{\text {shear }}=\left[\begin{array}{ll}
2 C_{13}^{(i)^{\text {mat }}} & 2 C_{13}^{(i)^{m a t}} \\
2 C_{1323}^{(i)^{\text {mat }}} & 2 C_{2323}^{(i)^{m a t}}
\end{array}\right],} \tag{30}
\end{align*}
$$

one has then, for each layer, in shell co-ordinates,

$$
\begin{align*}
& \left\{\sigma^{(i)}\right\}_{\text {plane }}=[\mathbf{T}]\left\{\sigma^{()^{\text {mat }}}\right\}_{p l a n e}=[\mathbf{T}]\left[\mathbf{C}^{(i)^{m a t}}\right]_{\text {plane }}[\mathbf{T}]^{-1}\{e\}_{\text {plane }} . \\
& {\left[\begin{array}{l}
\sigma_{13}^{(i)} \\
\sigma_{23}^{(i)}
\end{array}\right]=\left[\mathbf{T}_{\alpha \beta}\right]\left[\begin{array}{c}
\sigma_{13}^{(i) \text { mat }} \\
\sigma_{23}^{(i)^{\text {mat }}}
\end{array}\right]=\left[\mathbf{T}_{\alpha \beta}\right]\left[C^{(i)^{\text {mat }}}\right]_{\text {shear }}\left[\mathbf{T}_{\alpha \beta}\right]^{-1}\left[\begin{array}{c}
e_{13}^{(i)} \\
e_{23}^{(i)}
\end{array}\right],} \tag{31}
\end{align*}
$$

or

$$
\left\{\sigma^{(i)}\right\}_{\text {plane }}=\left[\mathbf{C}^{(i)}\right]_{\text {plane }}\{e\}_{\text {plane }}, \quad\left[\begin{array}{l}
\sigma_{13}^{(i)} \tag{32}\\
\sigma_{23}^{(i)}
\end{array}\right]=\left[\mathbf{C}^{(i)}\right]_{\text {shear }}\left[\begin{array}{l}
e_{13}^{(i)} \\
e_{23}^{(i)}
\end{array}\right],
$$

where

$$
\begin{gather*}
{\left[\mathbf{C}^{(i)}\right]_{\text {plane }}=[\mathbf{T}]\left[\mathbf{C}^{(i)^{m a t}}\right]_{\text {plane }}[\mathbf{T}]^{-1},} \\
{\left[\mathbf{C}^{(i)}\right]_{\text {shear }}=\left[\mathbf{T}_{\alpha \beta}\right]\left[\mathbf{C}^{(i)^{\text {mat }}}\right]_{\text {shear }}\left[\mathbf{T}_{\alpha \beta}\right]^{-1} .} \tag{33}
\end{gather*}
$$

2.4. BOUNDARY CONDITIONS FOR TRANSVERSE SHEAR STRESSES

The transverse shear strain components of the shell can be obtained by the formula (see, for instance, reference [2])

$$
\begin{equation*}
e_{\alpha 3}=\frac{1}{2}\left[U_{\alpha, 3}+U_{3 \mid \alpha}+b_{\alpha}^{\beta}\left(U_{\beta}-x_{3} U_{\beta, 3}\right)\right] \tag{34}
\end{equation*}
$$

where the covariant derivative on the reference surface Ω_{0} with respect to x_{α} is denoted by $\langle\langle\mid \alpha\rangle\rangle$.

One thus has

$$
\begin{align*}
e_{\alpha 3}= & \frac{1}{2}\left[\eta_{\alpha}+\left[\delta_{\alpha}^{\beta} f^{\prime}+b_{\alpha}^{\beta}\left(f-x_{3} f^{\prime}\right)\right] \gamma_{\beta}^{0}+\left[\delta_{\alpha}^{\beta} g^{\prime}+b_{\alpha}^{\beta}\left(g-x_{3} g^{\prime}\right)\right] \varphi_{\beta}\right. \\
& \left.+w_{\mid \alpha}+b_{\alpha}^{\beta} u_{\beta}+\sum_{m=1}^{N-1}\left[\delta_{\alpha}^{\beta}-x_{3_{(m)}} b_{\alpha}^{\beta}\right] u_{(m) \beta} \mathrm{H}\left(x_{3}-x_{3_{(m)}}\right)\right] . \tag{35}
\end{align*}
$$

2.4.1. Free traction conditions for transverse shear stresses on the top and bottom surfaces of the shell
The traction-free boundary conditions on the top and bottom surfaces of the shell can be written as follows, according to equations (31):

$$
\begin{equation*}
e_{\alpha 3}\left(x_{3}=0\right)=0, \quad e_{\alpha 3}\left(x_{3}=h\right)=0 \tag{36}
\end{equation*}
$$

This yields

$$
\begin{equation*}
\eta_{\alpha}+\gamma_{\alpha}^{0}+w_{\mid \alpha}+b_{\alpha}^{\beta}\left[u_{\beta}+(h / \pi) \varphi_{\beta}\right]=0 \tag{37a}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{\alpha}+\left[-\delta_{\alpha}^{\beta}+h b_{\alpha}^{\beta}\right] \gamma_{\beta}^{0}-b_{\alpha}^{\beta} \varphi_{\beta}+w_{\mid \alpha}+b_{\alpha}^{\beta} u_{\beta}+\sum_{m=1}^{N-1}\left[\delta_{\alpha}^{\beta}-x_{3_{(m)}} b_{\alpha}^{\beta}\right] u_{(m)_{\beta}}=0 \tag{37b}
\end{equation*}
$$

Substituting η_{α} from the equation (37a) into the above equation (37b) yields:

$$
\begin{equation*}
b_{\alpha}^{\beta} \varphi_{\beta}=\frac{\pi}{2 h}\left[-2 \delta_{\alpha}^{\beta}+h b_{\alpha}^{\beta}\right] \gamma_{\beta}^{0}+\sum_{m=1}^{N-1} \frac{\pi}{2 h}\left[\delta_{\alpha}^{\beta}-x_{3_{(m)}} b_{\alpha}^{\beta}\right] u_{(m)_{\beta}}, \tag{38}
\end{equation*}
$$

or

$$
\begin{equation*}
\varphi_{\alpha}=d_{\alpha}^{\beta} \gamma_{\beta}^{0}+\sum_{m=1}^{N-1} \frac{\pi}{2 h}\left[\delta_{\alpha}^{\beta}-x_{3_{(m)}} b_{\alpha}^{\beta}\right] u_{(m)_{\beta}}, \tag{39}
\end{equation*}
$$

where the tensor $\left[d_{\alpha}^{\beta}\right]$ is given by

$$
\begin{equation*}
\left[d_{\alpha}^{\beta}\right]=\frac{\pi}{2 h}\left[b_{\alpha}^{\beta}\right]^{-1}\left[-2 \delta_{\alpha}^{\beta}+h b_{\alpha}^{\beta}\right]=\frac{\pi}{2 h}\left[-2\left[b_{\alpha}^{\beta}\right]^{-1}+h\left[\delta_{\alpha}^{\beta}\right]\right], \tag{40}
\end{equation*}
$$

the identity tensor being denoted by $\left[\delta_{\alpha}^{\beta}\right]$.
Let D denote the determinant of the latter system. One has

$$
\begin{equation*}
\varphi_{\alpha}=d_{\alpha}^{\beta} \gamma_{\beta}^{0}+\sum_{m=1}^{N-1} f_{(m) \alpha}^{\beta} u_{(m)_{\beta}}, \tag{41}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{(m) \alpha}^{\beta}=\frac{\pi}{2 h D}\left[\sum_{m=1}^{N-1}\left(\delta_{v}^{\lambda}-x_{3_{(m)}} b_{v}^{\lambda}\right)\right] \Delta_{v \alpha} \epsilon_{i \mu} b_{\mu}^{\beta}, \tag{42}
\end{equation*}
$$

The $\epsilon_{\lambda \mu}$ coefficients are defined by

$$
\begin{equation*}
\epsilon_{11}=\epsilon_{22}=0, \quad \epsilon_{12}=-\epsilon_{21}=1 \tag{43}
\end{equation*}
$$

and the coefficients $\Delta_{v \alpha}$ by

$$
\begin{equation*}
\Delta_{v \alpha}=1-\delta_{\alpha}^{v} . \tag{44}
\end{equation*}
$$

Thus, the transverse shear strains can be expressed as

$$
\begin{align*}
e_{\alpha 3}= & \frac{1}{2}\left[\left[\delta_{\alpha}^{\beta}\left(f^{\prime}-1\right)+b_{\alpha}^{\beta}\left(f-x_{3} f^{\prime}\right)\right] \gamma_{\beta}^{0}+\left[\delta_{\alpha}^{\beta} g^{\prime}+b_{\alpha}^{\beta}\left(g-\frac{h}{\pi}-x_{3} g^{\prime}\right)\right] \varphi_{\beta}\right. \\
& \left.+\sum_{m=1}^{N-1}\left[\delta_{\alpha}^{\beta}-x_{3_{(m)}} b_{\alpha}^{\beta}\right] u_{(m) \beta} \mathrm{H}\left(x_{3}-x_{\left.3_{(m n}\right)}\right)\right] . \tag{45}
\end{align*}
$$

2.4.2. Continuity conditions for transverse shear stresses at layer interfaces

These conditions can be written as

$$
\begin{equation*}
\sigma_{\alpha 3}^{(i)}\left(x_{3}=x_{3_{(i)}}\right)=\sigma_{\alpha 3}^{(i+1)}\left(x_{3}=x_{3_{(i)}}\right), \quad \alpha=1,2 ; \quad i=1, \ldots, N-1 \tag{46}
\end{equation*}
$$

or

$$
\begin{equation*}
2 C_{\alpha 3 \omega 3}^{(i)}\left\{\lim _{\substack{\epsilon \rightarrow 0 \\ \epsilon>0}} e_{\omega 3}\left(x_{3_{(i)}}-\epsilon\right)\right\}=2 C_{\alpha 3 \omega 3}^{(i+1)}\left\{\lim _{\substack{\epsilon \rightarrow 0 \\ \epsilon>0}} e_{\omega 3}\left(x_{3_{(i)}}+\epsilon\right)\right\} . \quad \alpha=1,2 ; \quad i=1, \ldots, N-1 . \tag{47}
\end{equation*}
$$

Substituting equation (41) into equation (45), and using equation (47) yields

$$
\begin{align*}
\left(C_{\alpha 3 \omega 3}^{(i)}-\right. & C_{\alpha 3 \omega 3}^{(i+1)}\left[\left[\delta_{\omega}^{\beta}\left(f^{\prime}\left(x_{3_{(i)}}\right)-1\right)+b_{\omega}^{\beta}\left(f\left(x_{3_{(i)}}\right)-x_{3_{(i)}} f^{\prime}\left(x_{3_{(i)}}\right)\right)\right.\right. \\
& \left.+d_{v}^{\beta}\left[\delta_{\omega}^{v} g^{\prime}\left(x_{3_{(i)}}\right)+b_{\omega}^{v}\left(g\left(x_{3_{(i)}}\right)-\frac{h}{\pi}-x_{3_{(i)}} g^{\prime}\left(x_{3_{(i)}}\right)\right)\right]\right]_{\beta}^{0} \\
& +\sum_{m=1}^{i-1}\left[\left(\delta_{\omega}^{\beta}-x_{3_{(m)}} b_{\omega}^{\beta}\right)\right] u_{(m)_{\beta}} \\
& \left.+\sum_{m=1}^{N-1}\left[\left(\delta_{\omega}^{v} g^{\prime}\left(x_{3_{(i)}}\right)+b_{\omega}^{v}\left(g\left(x_{\left.3_{(i)}\right)}\right)-\frac{h}{\pi}-x_{3_{(i)}} g^{\prime}\left(x_{3_{(i)}}\right)\right)\right) f_{(m)^{v}}^{\beta}\right] u_{(m)_{\beta}}\right] \\
& -C_{\alpha 3 \omega 3}^{(i+1)}\left(\delta_{\omega}^{\beta}-x_{3_{(m)}} b_{\omega}^{\beta}\right) u_{(i)_{\beta}}=0 . \tag{48}
\end{align*}
$$

This can be regarded as a linear algebraic system of $2(N-1)$ equations, the $2(N-1)$ unknowns being the generalized displacements $\left\langle\langle\right.$ per layer $\rangle u_{(m)_{x}}(\alpha=1,2)$. These latter can thus be expressed as functions of the generalized displacements γ_{α}^{0} as

$$
\begin{equation*}
u_{(m)_{x}}=a_{(m)_{x}}^{\beta} \gamma_{\beta}^{0} \tag{49}
\end{equation*}
$$

where the $a_{(m)^{\alpha}}^{\beta}$ coefficients depend only on the curvatures and on the material properties of the various layers.
For a given laminated shell, b_{α}^{β} are known. All the $a_{(m) \alpha}^{\beta}$ are therefore constants.

2.5. THE FINAL DISPLACEMENT FIELD

Combining equation (37a) with equations (41) and (49) leads to

$$
\begin{equation*}
\eta_{\alpha}=-b_{\alpha}^{\beta} u_{\beta}+\Lambda_{\left(\eta_{\alpha}\right)}^{(\eta)^{\beta}} \gamma_{\beta}^{0}-w_{\mid \alpha}, \tag{50}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda_{\left.()_{\alpha}\right)}^{(\eta)^{\beta}}=-\left[\delta_{\alpha}^{\beta}+\frac{h}{\pi} b_{\alpha}^{\lambda} d_{\lambda}^{\beta}+\sum_{m=1}^{N-1} \frac{h}{\pi} f_{(m)_{\lambda}}^{\gamma} b_{\alpha}^{\lambda} a_{(m)_{\gamma}}^{\beta}\right] . \tag{51}
\end{equation*}
$$

Combining equation (39) with equation (49) yields

$$
\begin{equation*}
\varphi_{\alpha}=\Lambda_{\left(\gamma_{\alpha}\right)}^{(\varphi)^{\beta}} \gamma_{\beta}^{0}, \tag{52}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda_{\left(\gamma \gamma_{\alpha}\right)}^{(\eta)^{\beta}}=-\left[\delta_{\alpha}^{\beta}+\frac{h}{\pi} b_{\alpha}^{\lambda} d_{\lambda}^{\beta}+\sum_{m=1}^{N-1} \frac{h}{\pi} f_{(m)_{\lambda}}^{\gamma} b_{\alpha}^{\lambda} a_{(m)_{\gamma}}^{\beta}\right] . \tag{53}
\end{equation*}
$$

The approximate expressions of the displacement components become thus

$$
\begin{equation*}
U_{\alpha}=\mu_{\alpha}^{\beta} u_{\beta}-x_{3} w_{\mid \alpha}+h_{\alpha}^{\beta} \gamma_{\beta}^{0}, \quad U_{3}=w, \tag{54}
\end{equation*}
$$

where h_{α}^{β} are known functions of x_{3}, defined by

$$
\begin{equation*}
h_{\alpha}^{\beta}=\delta_{\alpha}^{\beta} f\left(x_{3}\right)+x_{3} \Lambda_{(y)_{\alpha}}^{(\eta)^{\beta}}+g\left(x_{3}\right) \Lambda_{(\vartheta)_{\alpha}}^{(\varphi)}+\sum_{m=1}^{N-1} \alpha_{(m)_{\alpha}}^{\beta}\left(x_{3}-x_{3(m)}\right) \mathrm{H}\left(x_{3}-x_{3_{(m)}}\right) \tag{55}
\end{equation*}
$$

2.6. FORMULATION OF THE TWO-DIMENSIONAL BOUNDARY VALUE PROBLEM

The equations of motion and the natural boundary conditions are derived from the Hamilton's principle:

$$
\begin{align*}
& \int_{0}^{t}\left\{\int_{V} \sigma^{i j} \delta e_{i j} \mathrm{~d} V-\int_{V} \rho \overrightarrow{\mathbf{U}} \cdot \delta \vec{U} \mathrm{~d} V+\int_{V} \vec{f} \cdot \delta \vec{U} \mathrm{~d} V+\int_{A} \vec{s} \cdot \delta \vec{U} \mathrm{~d} A\right. \\
& \left.\quad+\int_{\Omega_{0}}\left(-\mu_{(h)} p_{h}+p_{0}\right) \mathrm{d} S\right\} \mathrm{d} t=0 \tag{56}
\end{align*}
$$

$\mu_{(h)}$ denotes the value of

$$
\begin{equation*}
\mu=\operatorname{det}\left[\mu_{\alpha}^{\beta}\right] \tag{57}
\end{equation*}
$$

at $x_{3}=h$.
Differentiation with respect to time t is denoted by a superposed dot; ρ is the mass density, and δ the variational operator; f^{i} are components of body forces, s^{i} the prescribed components of the stress vector per unit area of the undeformed lateral surface of the shell, and p_{0} and p_{h} the prescribed components of the stress vector per unit area of the surfaces Ω_{0} and Ω_{h}.

This principle, which is generally used for elastic behaviour, can be extended to viscoelastic behaviour by using the correspondence theorem, keeping in mind that boundary conditions can be expressed as separable functions of space and time.

By performing numerical integration (Gauss points) through the thickness of the shell, the following equations of motion are obtained:

$$
\begin{align*}
& M_{[\beta}^{(1) \alpha \beta}-N^{(1)^{\alpha}}=I^{(1)^{\beta \alpha}} \ddot{u}_{\beta}-I^{(2)^{\alpha \beta}} \ddot{w}_{\mid \beta}+I^{(3)^{\beta)^{\alpha}} \ddot{\gamma}_{\beta}^{0}}-F^{(1)^{\alpha}}, \\
& M_{\mid \alpha \beta}^{(2) \beta^{\beta \alpha}}+N^{(1)^{3}}=I_{\mid \beta}^{(2) \alpha \beta} \ddot{u}_{\alpha}+I^{(2) \alpha \beta} \ddot{u}_{\alpha \mid \beta}+I^{(1)^{33}} \ddot{w}-I_{\mid \beta}^{(4) \alpha \beta} \ddot{w}_{\mid \alpha}-I^{(4)^{\alpha \beta}} \ddot{w}_{\mid \alpha \beta}+I_{\mid \beta}^{(6) \alpha \beta} \gamma_{\alpha}^{0} \\
& +I^{(6)^{\alpha \beta}} \ddot{\gamma}_{\alpha \mid \beta}^{0}-P^{3}-F^{(1)^{3}}-F_{\mid \beta}^{(2)^{\beta}}, \\
& M_{[\beta}^{(3)^{\alpha \beta \beta}}-N^{(2)^{\alpha}}-N^{(3)^{\alpha}}=I^{(3)^{\beta \beta}} \ddot{u}_{\beta}+I^{(5)^{\beta \alpha} \ddot{\gamma}_{\beta}^{0}}-I^{(6)^{\alpha \beta}} \ddot{w}_{\mid \beta}-F^{(3)^{\alpha}}, \quad \alpha=1,2 . \tag{58}
\end{align*}
$$

Here the generalized stresses are given by

$$
\begin{gather*}
{\left[N^{(1)^{\alpha}}, N^{(2)^{\alpha}}\right]=\int_{0}^{h} \sigma^{\lambda \beta} \mu_{\lambda}^{v}\left[\mu_{v \mid \beta}^{\alpha}, h_{v \mid \beta}^{\alpha}\right] \mu \mathrm{d} x_{3}, \quad N^{(1)^{3}}=\int_{0}^{h} \sigma^{\alpha \beta} \mu_{\lambda}^{v} b_{v \beta} \mu \mathrm{~d} x_{3}} \tag{59}\\
{\left[M^{(1)^{\alpha \beta}}, M^{(2)^{\alpha \beta}}, M^{(3)^{\alpha \beta}}\right]=\int_{0}^{h} \sigma^{\lambda \beta} \mu_{\lambda}^{v}\left[\mu_{v}^{\alpha}, x_{3} \delta_{v}^{\alpha}, h_{v}^{\alpha}\right] \mu \mathrm{d} x_{3}} \tag{60}\\
N^{(3)^{\alpha}}=\int_{0}^{h} \sigma^{\lambda 3}\left[\mu_{\lambda}^{v} h_{v, 3}^{\alpha}+b_{\lambda}^{v} h_{v}^{\alpha}\right] \mu \mathrm{d} x_{3} \tag{61}
\end{gather*}
$$

and

$$
\begin{gather*}
{\left[F^{(1)^{\alpha}}, F^{(2)^{\alpha}}, F^{(3)^{\alpha}}\right]=\int_{0}^{h} f^{v} \mu_{v}^{\beta}\left[\mu_{\lambda}^{\alpha}, \delta_{\lambda}^{\alpha} x_{3}, h_{\lambda}^{\alpha}\right] a^{\lambda \beta} \mu \mathrm{d} x_{3}} \\
F^{(1)^{3}}=\int_{0}^{h} f^{3} \mu \mathrm{~d} x_{3}, \tag{62}\\
{\left[S^{(1)^{\alpha}}, S^{(2)^{\alpha}}, S^{(3)^{\alpha}}\right]=\int_{0}^{h} S^{v \beta}\left[\mu_{v}^{\alpha}, h_{v}^{\alpha}, x_{3} \delta_{v}^{\alpha}\right] n_{\beta} \mu \mathrm{d} x_{3}} \tag{63}\\
S^{(1)^{3}}=\int_{0}^{h} s^{3 \beta} n_{\beta} \mu \mathrm{d} x_{3}, \quad P^{3}=-\mu_{(h)} p_{h}+p_{0} \tag{64}
\end{gather*}
$$

Inertia quantities are given by

$$
\begin{gather*}
{\left[I^{(1)^{\alpha \beta}}, I^{(2)^{\alpha \beta}}, I^{(3))^{\alpha \beta}}, I^{(4)^{\alpha / \beta}}, I^{(5)^{\alpha / \beta}}, I^{(6)^{\alpha \beta}}\right]} \\
=\int_{0}^{h} \rho a^{\alpha \nu}\left[\mu_{v}^{\beta} \mu_{\lambda}^{\alpha} x_{3} \delta_{\lambda}^{\beta} \mu_{v}^{\alpha}, \mu_{v}^{\beta} h_{\lambda}^{\alpha}, x_{3}^{2} \delta_{\lambda}^{\beta} \delta_{v}^{\alpha}, h_{v}^{\beta} h_{\lambda}^{\alpha}, \delta_{\lambda}^{\beta} h_{v}^{\alpha}\right] \mu \mathrm{d} x_{3} \\
I^{(1)^{\beta 3}}=\int_{0}^{h} \rho \mu \mathrm{~d} x_{3} . \tag{65}
\end{gather*}
$$

The boundary conditions are

$$
\begin{gather*}
M^{(1)^{2 \beta \beta}} n_{\beta}=S^{(1)^{\alpha}}, \quad \text { or } \delta u_{\alpha}=0, \\
{\left[\frac{1}{2}\left(M^{(2)^{\alpha \beta}}+M^{(2)^{\beta x}}\right)_{\mid \alpha}+F^{\left.(2)^{\beta}\right]} n_{\beta}=S^{(1)^{3}}, \quad \text { or } \delta w=0,\right.} \\
M^{(3)^{\alpha \beta}} n_{\beta}=S^{(2)^{\alpha}}, \quad \text { or } \delta \gamma_{\alpha}^{0}=0, \\
\frac{1}{2}\left[M^{(2)^{\alpha \beta}}+M^{(2)^{\beta \alpha}}\right] n_{\beta}=S^{3^{\alpha}}, \quad \text { or } \delta w_{\mid \alpha}=0 . \tag{66}
\end{gather*}
$$

The displacement equations of motion are deduced from equations (58)-(65) including the constitutive law given by equation (22).

3. APPPLICATIONS IN WAVE PROPAGATION

3.1. DISPERSION EQUATION

The solution, in terms of generalized displacements $u_{1}, u_{2}, w, \gamma_{1}^{0}, \gamma_{2}^{0}$, is assumed in the following form

$$
\begin{gather*}
u_{1}=A_{1} \cos \left(n x_{2}\right) \exp \left(\mathrm{i}\left(\omega t-\lambda_{1} x_{1}\right)\right), \quad u_{2}=A_{2} \sin \left(n x_{2}\right) \exp \left(\mathrm{i}\left(\omega t-\lambda_{1} x_{1}\right)\right) \\
w=B \cos \left(n x_{2}\right) \exp \left(\mathrm{i}\left(\omega t-\lambda_{1} x_{1}\right)\right) \\
\gamma_{1}^{0}=C_{1} \cos \left(n x_{2}\right) \exp \left(\mathrm{i}\left(\omega t-\lambda_{1} x_{1}\right)\right), \quad \gamma_{2}^{0}=C_{2} \sin \left(n x_{2}\right) \exp \left(\mathrm{i}\left(\omega t-\lambda_{1} x_{1}\right)\right) \tag{68}
\end{gather*}
$$

which characterizes the propagation of harmonic plane waves of wavenumber λ_{1} and frequency $\omega ; \mathrm{i}^{2}=-1$.

By substituting these expressions into the equations of motion given by equations (58) with equations (59)-(61) and (22), for free motions, five linear equations in terms of $A_{1}, A_{2}, B, C_{1}, C_{2}$ are obtained. For a non-trivial solution, the determinant of the coefficient matrix must vanish, resulting in the frequency equation

$$
\begin{equation*}
\operatorname{det}\left[\mathbf{K}-\omega^{2} \mathbf{M}\right]=0 \tag{69}
\end{equation*}
$$

where \mathbf{K} represents a stiffness matrix, and \mathbf{M} a mass matrix.
A sixth-order dispersion equation in λ_{1}^{2}, with the circumferential mode number n as parameter (n is an integer), is therefore obtained. For the sake of completeness, the elements of the determinantal frequency equation coefficients (denoted $c_{i j}, 1 \leqslant i \leqslant 5$, $1 \leqslant j \leqslant 5$) are given in the Appendix. Five roots of the dispersion equation represent the axial wave number in the positive x_{1} direction.

When the wavenumber λ_{1} is set equal to zero, a number of cut-off frequencies, depending on the value of n are found, as may be observed in the following spectra.

Simplified expressions (asymptotic ones) for phase velocities can also be obtained when the wavelength is short $\left(\lambda_{1} \rightarrow \infty\right)$. Among those values, one will retain the shear-wave velocity of the medium, that will be denoted by c_{T}.

Geometric and physical parameters being given, the frequency equation (69) constitutes a transcendental relationship between the nondimensional wavenumber $\bar{\lambda}_{1}=\lambda_{1} / \pi R$ (70), the number of circumferential waves n, and the non-dimensionalized frequency $\bar{\omega}$, defined by

$$
\begin{equation*}
\bar{\omega}=\omega R / \pi c_{T} . \tag{71}
\end{equation*}
$$

When the constitutive law is viscoelastic, this latter equation admits complex wavenumbers. One recalls that the real part of the wavenumber represents harmonic

Table 1

Free vibration analysis of simply supported cylindrical isotropic shells; comparison of lowest natural frequency parameters $\tilde{\omega}=(\omega h / \pi) \sqrt{\rho / G}$, where G is the shear modulus, $n=0 \cdot 3$ the Poisson's ratio, R the mean radius of the cylinder, a its length, for $\lambda_{1}=m \pi R / a=4 \pi$, and m an integer (SDT: shear deformation theory)

	n				n			
	1	2	3	4	1	2	3	4
	$h / r=0.06$				$h / r=0 \cdot 1$			
Exact-3D	0.08639	0.08748	$0 \cdot 08933$	0.09199	$0 \cdot 20529$	$0 \cdot 20802$	$0 \cdot 21261$	$0 \cdot 21906$
Present	0.08636	0.08746	0.08932	0.092001	$0 \cdot 20480$	$0 \cdot 20800$	$0 \cdot 21201$	$0 \cdot 21890$
Touratier	0.08635	0.08745	$0 \cdot 08931$	$0 \cdot 09200$	$0 \cdot 20458$	$0 \cdot 20733$	$0 \cdot 21192$	$0 \cdot 21839$
Bhimaraddi	0.08639	0.08728	$0 \cdot 08911$	0.09175	$0 \cdot 20478$	$0 \cdot 20678$	$0 \cdot 21132$	$0 \cdot 21771$
SDT	0.08611	$0 \cdot 08718$	$0 \cdot 08902$	0.09165	$0 \cdot 20360$	$0 \cdot 20628$	$0 \cdot 21077$	$0 \cdot 21710$
Flügge	0.09161	0.09290	$0 \cdot 09510$	0.09824	$0 \cdot 23623$	0.23995	$0 \cdot 24620$	$0 \cdot 25502$
	$h / r=0 \cdot 12$				$h / r=0 \cdot 18$			
Exact-3D	$0 \cdot 27491$	$0 \cdot 27849$	$0 \cdot 28447$	$0 \cdot 29287$	0.50338	$0 \cdot 50937$	0.51934	0.53325
Present	$0 \cdot 27421$	0.27828	$0 \cdot 28390$	$0 \cdot 29171$	0.50048	0.50933	0.51890	0.53319
Touratier	$0 \cdot 27361$	$0 \cdot 27721$	$0 \cdot 28321$	$0 \cdot 29161$	$0 \cdot 50002$	$0 \cdot 50606$	$0 \cdot 51610$	0.53008
Bhimaraddi	$0 \cdot 27286$	$0 \cdot 27641$	$0 \cdot 28233$	0.29064	$0 \cdot 49818$	$0 \cdot 50418$	0.51416	0.52808
SDT	$0 \cdot 27197$	$0 \cdot 27547$	$0 \cdot 28131$	$0 \cdot 28951$	$0 \cdot 49479$	$0 \cdot 50058$	$0 \cdot 51021$	0.52366
Flügge	$0 \cdot 32960$	0.33479	$0 \cdot 34349$	$0 \cdot 35571$	$0 \cdot 67100$	$0 \cdot 68056$	$0 \cdot 69634$	0.71803

variations, and that the imaginary part represents spatial attenuation. A direct method has been used to determine the roots of the frequency equation: i.e., fixing the values of frequency, restricted to their real part, and searching for the values of the corresponding wavenumber. For a given value of the frequency, several values of the wavenumber are obtained, each one corresponding to a peculiar propagating mode.

Figure 2. Non-dimensionalized frequency $\bar{\Omega}=\left(\omega h_{2} / \pi\right) \sqrt{\rho_{2} / \mu_{2}}$ versus real part of the non-dimensionalized wave number for axisymmetric mode spectrum $(n=0)$ in a three-layered elastic cylinder for $h / R=0 \cdot 1$, where h_{2} is the thickness of the second layer, ρ_{2} its mass density, μ_{2} the corresponding Lamé constant, R the mean radius of the cylinder, and h its thickness. -—, Model, - ; three-dimensional solution.

Figure 3. Non-dimensionalized frequency $\bar{\Omega}=\left(\omega h_{2} / \pi\right) \sqrt{\rho_{2} / \mu_{2}}$ versus real part of the non-dimensionalized wave number for axisymmetric mode spectrum $(n=0)$ in a three-layered elastic cylinder for $h / R=1$, where h_{2} is the thickness of the second layer, ρ_{2} its mass density, μ_{2} the corresponding Lamé, constant, R the mean radius of the cylinder, and h its thickness. Key as Figure 2.

Figure 4. The viscoelastic cylinder.

Figure 5. Non-dimensionalized frequency versus real parts of the non-dimensionalized wave numbers for axisymmetric mode spectrum $(n=0)$ in a three-layered cylinder with a viscoelastic internal layer.

Table 2
Non-dimensional frequency for axisymmetric mode spectrum $(n=0)$ in a three-layered cylinder with a viscoelastic internal layer

$\bar{\omega}$	1 st mode $\left[\operatorname{Re}\left(\bar{\lambda}_{1}^{(1)}\right)\right]$	2nd mode [$\left.\operatorname{Re}\left(\bar{\lambda}_{1}^{(2)}\right)\right]$	3 rd mode $\left[\operatorname{Re}\left(\bar{\lambda}_{1}^{(3)}\right)\right]$
0	$0 \cdot 000$	$0 \cdot 000$	-
$0 \cdot 5$	1.059	$0 \cdot 559$	$0 \cdot 011$
1	$2 \cdot 122$	$0 \cdot 796$	$0 \cdot 023$
2	$4 \cdot 264$	1.135	0.045
3	$6 \cdot 416$	$1 \cdot 400$	$0 \cdot 064$
5	10.725	1.826	$0 \cdot 094$
$5 \cdot 5$	11.802	1.919	$0 \cdot 100$
7	$15 \cdot 032$	$2 \cdot 177$	$0 \cdot 115$
$7 \cdot 5$	$16 \cdot 107$	$2 \cdot 258$	$0 \cdot 120$
8	$17 \cdot 182$	2.335	$0 \cdot 124$
9	19.753	$2 \cdot 534$	$0 \cdot 133$
$9 \cdot 5$	20.410	$2 \cdot 904$	$0 \cdot 136$
10	21.487	$3 \cdot 197$	$0 \cdot 139$
11	23.637	$3 \cdot 817$	$0 \cdot 146$

3.2. VALIDATION OF THE THEORY IN THE CASE OF WAVE PROPAGATION

In order to assess the accuracy of the proposed laminated shell theory in dynamics, comparison with previous theories has been made for the case of a homogeneous elastic cylinder; comparison with the exact three-dimensional solution has also been made for a three-layered elastic cylinder for axisymmetric motion, which is the only case where an exact solution has been investigated $[15,17]$.

3.2.1. Case of an isotropic elastic cylinder

Table 1 contains non-dimensionalized natural frequencies for isotropic short cylindrical shells obtained by using various theories: three-dimensional elasticity (Armenakas et al. [16]); present theory; Touratier theory [5]; Bhimaraddi theory [9]; shear-deformation theory with a shear correction factor equal to $\pi^{2} / 12$, Mirsky and Hermann [10]; Flügge theory [11]. Only the most significant problem from the Bhimaraddi paper [9] has been retained: i.e., $\lambda_{1}=m \pi R / a=4 \pi$. Comparisons of the above theories show that the maximum error in the present analysis is about -0.57%, whereas in the Touratier theory results are about -0.6%, Bhimaraddi results about -1%, the shear-deformation theory is about $-1 \cdot 8 \%$, and the Flügge theory is about $+35 \%$. The improvements due to the simultaneous refinements of the shear and membrane terms are apparent.

Figure 6. Non-dimensionalized phase velocity versus real parts of the non-dimensionalized wave numbers for axisymmetric mode spectra $(n=0)$ for three-layered cylinders. - , Viscoelastic case; - , elastic case.

Table 3
Non-dimensional phase velocity versus frequency axisymmetric mode spectra $(n=0)$ in a three-layered cylinder with (a) a viscoelastic internal layer, and (b) an elastic internal layer

$\bar{\omega}$	1st mode		2 nd mode		3rd mode	
	$\operatorname{Re}\left(\bar{\lambda}_{1}^{(1)}\right)$	$\bar{\omega} / \operatorname{Re}\left(\bar{\lambda}_{1}^{(1)}\right)$	$\operatorname{Re}\left(\bar{\lambda}_{1}^{(2)}\right)$	$\bar{\omega} / \operatorname{Re}\left(\bar{\lambda}_{1}^{(2)}\right)$	$\operatorname{Re}\left(\bar{\lambda}_{1}^{(3)}\right)$	$\bar{\omega} / \operatorname{Re}\left(\bar{\lambda}_{1}^{(3)}\right)$
(a)						
$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 048$	$0 \cdot 000$	$0 \cdot 300$	-	-
0.051	$1 \cdot 059$	0.048	0.559	$0 \cdot 091$	$0 \cdot 011$	$4 \cdot 636$
$0 \cdot 101$	$2 \cdot 122$	0.048	0.796	$0 \cdot 127$	0.023	$4 \cdot 391$
$0 \cdot 203$	$4 \cdot 264$	0.048	$1 \cdot 135$	$0 \cdot 179$	0.045	4.511
$0 \cdot 304$	$6 \cdot 416$	0.047	1.400	$0 \cdot 217$	$0 \cdot 064$	4.750
$0 \cdot 506$	10.725	0.047	1.826	$0 \cdot 277$	$0 \cdot 094$	$5 \cdot 383$
$0 \cdot 557$	11.802	0.047	1.919	$0 \cdot 290$	$0 \cdot 100$	$5 \cdot 570$
0.709	15.032	0.047	$2 \cdot 177$	0.326	$0 \cdot 115$	$6 \cdot 165$
$0 \cdot 760$	$16 \cdot 107$	0.047	$2 \cdot 258$	0.337	$0 \cdot 120$	6.333
$0 \cdot 810$	$17 \cdot 182$	0.047	2.335	$0 \cdot 347$	0. 124	$6 \cdot 533$
0.912	19.753	$0 \cdot 046$	$2 \cdot 534$	$0 \cdot 360$	$0 \cdot 133$	$6 \cdot 857$
0.962	20.410	0.047	$2 \cdot 904$	0.331	$0 \cdot 136$	$7 \cdot 074$
1.013	$21 \cdot 487$	0.047	$3 \cdot 197$	$0 \cdot 317$	$0 \cdot 139$	7.288
$1 \cdot 114$	23.637	$0 \cdot 047$	$3 \cdot 817$	$0 \cdot 292$	$0 \cdot 146$	$7 \cdot 630$
(b)						
$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 048$	-	-	-	-
0.101	$2 \cdot 116$	0.048	$0 \cdot 790$	0.128	0.029	$3 \cdot 483$
$0 \cdot 152$	$3 \cdot 174$	0.048	0.970	$0 \cdot 157$	0.043	$3 \cdot 535$
$0 \cdot 203$	$4 \cdot 232$	0.048	$1 \cdot 122$	0.181	0.057	$3 \cdot 561$
$0 \cdot 253$	$5 \cdot 290$	0.048	$1 \cdot 258$	$0 \cdot 201$	0.072	$3 \cdot 514$
$0 \cdot 304$	$6 \cdot 347$	0.048	$1 \cdot 381$	$0 \cdot 220$	0.086	$3 \cdot 535$
$0 \cdot 355$	7.405	$0 \cdot 048$	$1 \cdot 500$	0.237	$0 \cdot 100$	$3 \cdot 550$
$0 \cdot 405$	8.463	0.048	1.603	$0 \cdot 253$	$0 \cdot 115$	$3 \cdot 522$
0.456	9.521	0.048	1.704	$0 \cdot 278$	$0 \cdot 129$	3.535
$0 \cdot 506$	$10 \cdot 579$	0.048	1.801	$0 \cdot 281$	$0 \cdot 143$	$3 \cdot 538$
$0 \cdot 608$	12.695	0.048	1.982	$0 \cdot 307$	$0 \cdot 172$	$3 \cdot 535$
$0 \cdot 709$	14.811	$0 \cdot 048$	$2 \cdot 151$	$0 \cdot 330$	$0 \cdot 201$	$3 \cdot 527$
$0 \cdot 810$	16.927	0.048	$2 \cdot 310$	$0 \cdot 351$	$0 \cdot 229$	$3 \cdot 537$
0.912	19.043	0.048	2.461	$0 \cdot 371$	$0 \cdot 258$	$3 \cdot 535$
1.013	20.567	$0 \cdot 048$	2.746	$0 \cdot 369$	$0 \cdot 315$	$3 \cdot 216$

3.2.2. Case of a three-layered elastic cylinder

An infinitely long traction-free circular cylindrical shell, of thickness h and inner radius R, composed of three orthotropic elastic layers, perfectly bonded at their interfaces is considered. The purpose of the study being the propagation of plane waves in the infinite length cylinder, no boundary conditions are requested.
Figures 2 and 3 show the frequency versus real part of the wave number for the first axisymmetric mode (fundamental torsional one) for $h / R=0 \cdot 1$ and $h / R=1$ respectively. The results obtained with the present theory are compared to those of the exact three-dimensional solution of Armenakas [17]. It can be observed that, for $h / R=0 \cdot 1$, the present theory gives results close to the exact three-dimensional solution. The case $h / R=1$, where the cylinder can be considered nearly as a solid one, has been examined in order to show the limitations of the model, as can be observed in Figure 4.

Figure 7. Non-dimensionalized frequency versus real parts of the non-dimensionalized wave numbers for asymmetric mode spectra $(n=1)$ for three-layered cylinders having viscoelastic internal layer.

3.3. APPLICATION TO A MULTILAYERED VISCOELASTIC CYLINDER

An infinitely long traction-free circular cylindrical shell, of thickness h and inner radius $R(R=9 \cdot 5 h)$, composed of three orthotropic layers of equal thickness, perfectly bonded at their interfaces is considered (see Figure 4). The internal layer of the cylinder is made of a viscoelastic polymer and the external skins are purely elastic, all the corresponding constitutive law being isotropic (Young's moduli E_{1}, E_{3}, Poisson's ratios v_{1}, v_{3}, mass densities ρ_{1}, ρ_{3} respectively). A viscoelastic Kelvin-Voigt constitutive law, using complex Young moduli, has been retained for the viscoelastic layer, in the form

$$
\begin{equation*}
E_{2}=E_{2}^{\prime}+\mathrm{j} \omega E_{2}^{\prime \prime} \tag{67}
\end{equation*}
$$

where E_{2}^{\prime} and $E_{2}^{\prime \prime}$ are constants. The Poisson's ratio and the mass density of the viscoelastic core will respectively be denoted ν_{2}, ρ_{2}.

Table 4
Non-dimensional frequency for asymmetric mode spectra $(n=1)$ in a three-layered cylinder with a viscoelastic internal layer

$\bar{\omega}$	1st mode $\operatorname{Re}\left(\bar{\lambda}_{1}^{(1)}\right)$	2nd mode $\operatorname{Re}\left(\bar{\lambda}_{1}^{(2)}\right)$	3rd mode $\operatorname{Re}\left(\bar{\lambda}_{1}^{(3)}\right)$	4th mode $\operatorname{Re}\left(\bar{\lambda}_{1}^{(4)}\right)$	5th mode $\operatorname{Re}\left(\bar{\lambda}_{1}^{(5)}\right)$
$0 \cdot 000$	$0 \cdot 000$	-	-	-	-
$0 \cdot 159$	$4 \cdot 660$	$0 \cdot 325$	$0 \cdot 300$	-	-
0.955	8.073	$0 \cdot 780$	$0 \cdot 644$	$0 \cdot 611$	-
$1 \cdot 591$	10.791	$1 \cdot 243$	$1 \cdot 233$	0.907	-
1.750	11.440	1.752	$1 \cdot 566$	$1 \cdot 253$	$0 \cdot 703$
$2 \cdot 068$	12.752	$2 \cdot 603$	1.925	$1 \cdot 500$	$1 \cdot 104$
$2 \cdot 227$	13.419	$2 \cdot 978$	$2 \cdot 026$	$1 \cdot 663$	$1 \cdot 336$
2.387	14.092	$3 \cdot 298$	$2 \cdot 094$	$1 \cdot 844$	$1 \cdot 591$
$2 \cdot 546$	14.775	$3 \cdot 578$	$2 \cdot 141$	$2 \cdot 026$	$1 \cdot 846$
$2 \cdot 705$	$15 \cdot 449$	$3 \cdot 827$	$2 \cdot 308$	2.162	1.952
$2 \cdot 864$	$16 \cdot 126$	$4 \cdot 027$	$2 \cdot 478$	$2 \cdot 274$	$2 \cdot 052$
$3 \cdot 023$	$16 \cdot 819$	$4 \cdot 186$	$2 \cdot 811$	$2 \cdot 280$	$2 \cdot 147$
3.182	17.504	$4 \cdot 299$	3.162	$2 \cdot 310$	$2 \cdot 238$
$3 \cdot 500$	$18 \cdot 865$	$4 \cdot 364$	$3 \cdot 531$	$2 \cdot 371$	$2 \cdot 268$
$3 \cdot 819$	$20 \cdot 215$	$4 \cdot 74$	3.916	$2 \cdot 500$	$2 \cdot 294$
$4 \cdot 773$	$24 \cdot 227$	$7 \cdot 574$	$4 \cdot 257$	$2 \cdot 718$	$2 \cdot 364$
$6 \cdot 364$	$30 \cdot 127$	$12 \cdot 307$	$26 \cdot 378$	$2 \cdot 510$	$2 \cdot 400$

Figure 8. Non-dimensionalized phase velocity versus real parts of the non-dimensionalized wave numbers for first asymmetric mode spectra $(n=1)$ for three-layered cylinders. Key as Figure 6.

The mechanical properties of the different layers are as follows; steel skins, $\rho_{1}=\rho_{3}=7800 \mathrm{~kg} / \mathrm{m}^{3}, v_{1}=v_{3}=0 \cdot 3, E_{1}=E_{3}=210 \mathrm{GPa}$, viscoelastic core, $\rho_{2}=980 \mathrm{~kg} / \mathrm{m}^{3}$, $v_{2}=0.453, E_{2}^{\prime}=100 \mathrm{GPa}, E_{2}^{\prime \prime}=20 \mathrm{GPa} \cdot \mathrm{s}^{-1}$. In this paper, the frequency-versus-real part of the wave number for axisymmetric and asymmetric modes are presented.

Table 5
Non-dimensional phase velocity versus frequency for asymmetric mode spectra $(n=1)$ in a three-layered cylinder with (a) a viscoelastic internal layer and (b) an elastic internal layer

$\bar{\omega}$	1st mode				
	$\operatorname{Re}\left(\bar{\lambda}_{1}^{(1)}\right)$	$\bar{\omega} / \operatorname{Re}\left(\bar{\lambda}_{1}^{(1)}\right)$	$\bar{\omega}$	$\operatorname{Re}\left(\bar{\lambda}_{1}^{(1)}\right)$	$\bar{\omega} / \operatorname{Re}\left(\bar{\lambda}_{1}^{(1)}\right)$
(a)			(b)		
$0 \cdot 000$	$0 \cdot 000$	-	$0 \cdot 000$	$0 \cdot 000$	-
0.955	8.073	-	0.477	$3 \cdot 204$	-
1.591	10.791	-	0.509	$3 \cdot 417$	-
1.750	11.440	$2 \cdot 489$	0.573	$3 \cdot 843$	-
$2 \cdot 068$	12.752	1.873	$0 \cdot 636$	$4 \cdot 268$	-
$2 \cdot 227$	13.419	1.667	0.700	$4 \cdot 694$	-
$2 \cdot 387$	14.092	$1 \cdot 500$	0.796	$5 \cdot 331$	-
$2 \cdot 546$	14.775	$1 \cdot 379$	0.859	$5 \cdot 755$	-
2.705	$15 \cdot 449$	$1 \cdot 467$	0.955	$6 \cdot 390$	-
2.864	$16 \cdot 126$	$1 \cdot 473$	1.018	$6 \cdot 815$	-
3.023	$16 \cdot 819$	$1 \cdot 482$	$1 \cdot 114$	$7 \cdot 450$	-
$3 \cdot 182$	17.504	1.564	$1 \cdot 177$	7.873	-
$3 \cdot 500$	18.865	1.684	1.273	$8 \cdot 508$	-
$3 \cdot 819$	$20 \cdot 215$	$2 \cdot 081$	1.432	9.565	-
4.773	$24 \cdot 227$	$2 \cdot 692$	1.591	$10 \cdot 622$	-
			1.909	12.735	$13 \cdot 636$
			2.068	13.791	13.605
			2.227	$14 \cdot 848$	$13 \cdot 579$
			2.387	15.904	$13 \cdot 563$
			2.546	$16 \cdot 961$	13.543
			2.705	18.018	$13 \cdot 525$
			2.864	19.074	13.509
			3.023	$20 \cdot 131$	13.496
			3.182	21-188	13.483
			$3 \cdot 500$	23.301	13.462
			3.819	25.415	13.447
			4.455	29.644	13.459
			4.773	31.758	13.445
			6.364	42.333	13.426

3.3.1. Axisymmetric modes

For axisymmetric motion $(n=0)$, a number of terms in the frequency determinant (69) vanish, reducing the frequency equation to

$$
c_{22}\left(c_{55}-\frac{c_{25} c_{52}}{c_{22}}\right)\left|\begin{array}{lll}
c_{11} & c_{13} & c_{14} \tag{72}\\
c_{31} & c_{33} & c_{34} \\
c_{41} & c_{43} & c_{44}
\end{array}\right|=0
$$

so that only three modes, among which two fundamental ones (with a zero cut-off frequency) exist.
3.3.1.1. Frequency spectrum. Figure 5 and Table 2 show the frequency-versus real part of the wave number for axisymmetric mode spectrum, in the case of the viscoelastic cylinder described above. The three different modes, among which the fundamental torsional and longitudinal modes, clearly appear.

In the viscoelastic case studied, the fundamental torsional and longitudinal modes are coupled, as can be proved by developing equation (72); in an elastic case, they would on the contrary be uncoupled, as can also be proved by developing equation (72). The remaining mode (torsional upper mode) is an upper one, with a non-zero cut-off frequency.
3.3.1.2. Phase-velocity spectrum; comparison with the equivalent elastic case. Figure 6 shows the phase velocity versus real part of the wave number for the two first axisymmetric modes (torsional and longitudinal) spectra, in the case of the viscoelastic cylinder and for the elastic case.

Viscoelasticity affects the first fundamental torsional mode, which becomes weakly dispersive, with an asymptotic velocity numerically found equal to the shear-wave velocity in the cylinder $\left(c_{T}\right)$. The fundamental longitudinal mode is, on the contrary, much more sensitive to viscoelasticity. Frontwave phase-velocities are however the same in both cases; the mode tends to become non-dispersive as $\operatorname{Re}\left(\bar{\lambda}_{1}\right)$ increases, with an asymptotic velocity that is numerically found to be equal to c_{T}, for the elastic and viscoelastic internal layer (see Tables 3(a, b)). This figure shows that even for a viscoelastic constitutive law for the core, torsional waves are weakly dispersive (not dispersive in the elastic case), while longitudinal waves are dispersive.

3.3.2. Asymmetric modes

3.3.2.1. Frequency spectrum. Figure 7 and Table 4 show the frequency-versus real part of the wave number for asymmetric mode spectra, in the case of the three-layered cylinder with a viscoelastic internal layer. The five different modes, among which is the fundamental flexural mode, clearly appear.
3.3.2.2. Phase-velocity spectrum; comparison with the equivalent elastic case. Figure 8 and Tables $5(\mathrm{a}, \mathrm{b})$ show the phase velocity-versus real part of the wave number for the first asymmetric mode (flexural) spectra, in the case of the three-layered cylinder with a viscoelastic or an elastic core.
In the viscoelastic case, phase velocity is much more sensitive to the variations of the real part of the wave number. As for the longitudinal motion, it can also be observed that, at a fixed wavenumber, the flexural harmonic waves propagate with larger phase velocities in the viscoelastic cylinder than in the equivalent elastic one. In both cases, as usually, this flexural mode tends to become non-dispersive as $\operatorname{Re}\left(\bar{\lambda}_{1}\right)$ increases.

4. CONCLUSIONS

A new refined two-dimensional laminated shell theory, which allows the continuity requirements for displacements and stresses at layer interfaces to be satisfied exactly, is proposed. The model, which keeps only five generalized displacements, also takes into account refinements of membrane and shear terms. The efficiency of this new kinematics for the modelling of shells in dynamics is proved through comparison with previous theories in a case for which an exact three-dimensional theory is known (Armenakas $[15,16])$. The results presented here show the improvements due to the theory, for which no need for shear correction factors is requested The model is then applied to the determination of the dispersive behaviour of a circular cylindrical viscoelastic shell. The influence of viscoelasticity, as concerns dispersion, clearly appears.

REFERENCES

1. R. D. Mindlin 1951 Journal of Applied Mechanics 18. Influence of rotatory inertia and shear on flexural motions of isotropic and elastic plates.
2. P. M. Naghdi 1972 Handbuch der Physik (edited by S. Flügge). Berlin: Springer; the theory of shells and plates; volume VIa/2, 425-640.
3. W. T. Koiter and J. G. Simmonds 1973 Theoretical and Appplied Mechanics, Proceedings of the 13th International Congress on Theoretical Mechanics (edited by E. Becker and G. K. Mikhalilov). Berlin: Springer; Foundations of shell theory. 150-173.
4. M. Touratier 1992 International Jounal of Solids and Structures 29, 1379-1399. A generalization of shear deformation theories for axisymmetric multilayered shells.
5. M. Touratier 1992 International Jounal of Solids and Structures 29, 1401-1415. A refined theory of laminated shallow shells.
6. M. Touratier and J.-P. Faye 1995 Computers and Structures 54, (5) 897-920. On a refined model in structural mechanics: finite element approximation and edge effect analysis for axisymmetric shells.
7. M. Touratier and A. Beakou 1992 25th European Conference on Composite Materials, Bordeaux, France (edited by A. R. Bunsell). A higher order finite element computational model of composite laminates.
8. A. Beakou and M. Touratier 1993 International Journal for Numerical Methods in Engineering 36, 627-653. A rectangular finite element for analysing composite multilayered shallow shells in statics, vibration and buckling.
9. A. Bhimaraddi 1984 International Jounal of Solids and Structures 20, 623-630. A higher order theory for free vibration analysis of circular cylindrical shells.
10. I. Mirsky and G. Hermann 1957 Journal of the Acoustical Society of America 29, 1116-1124. Nonaxially symmetric motions of cylindrical shells.
11. W. Flügge 1960 Stresses in shells. Berlin: Springer.
12. M. Di Sciuva 1987 Journal of Applied Mechanics 54, 589-596. An improved third-order shear deformation theory for moderately thick multilayered anisotropic shells and plates.
13. L.-H. He 1994 International Journal of Solids and Structures 31, 613-627. A linear theory of laminated shells accounting for continuity of displacements and transverse shear stresses at layer interfaces.
14. S. Cheng 1979 Journal of Applied Mechanics 46, 644-650. Elasticity theory of plates and a refined theory.
15. R. B. Nelson, S. B. Dong and A. Kalra 1971 Journal of Sound and Vibration 18, 429-444. Vibrations and waves in laminated orthotropic circular cylinders.
16. A. E. Armenakas, D. Gazis and G. Hermann 1969 Free vibration of circular cylindrical shells. Oxford: Pergamon Press.
17. A. E. Armenakas and H. E. Keck 1971 Journal of the Acoustical Society of America 49, 1511-1520. Dispersion of axially symmetric waves in three-layered elastic shells.

APPENDIX

The elements of the determinantal frequency equation are given below, where $c_{i j}$ is an element in the i th row, j th column:

$$
\begin{aligned}
& c_{21}=M_{A_{1}}^{(1) 1^{21}}+M_{A_{1}}^{(1)^{22}}, \quad c_{22}=M_{A_{2}}^{(1)^{21}}+M_{A_{2}}^{(1)^{22}}-\omega^{2} I^{(1)^{22}}, \\
& c_{23}=M_{B}^{(1)^{21}}+M_{B}^{(1)^{22}}-\omega^{2}\left(n / \alpha_{2}\right) I^{(2)^{11}}, \quad c_{24}=M_{c_{1}}^{(1)^{21}}+M_{c_{1}}^{(1)^{22}}, \\
& c_{25}=M_{c_{2}}^{(1) 1^{21}}+M_{c_{2}}^{(1)^{22}}-\omega^{2} I^{(3)^{22}}, \quad c_{51}=M_{A_{1}}^{(3)^{21}}+M_{A_{1}}^{(3) 2}, \\
& c_{52}=M_{A_{2}}^{(3)^{21}}+M_{A_{2}}^{(3) 22}-\omega^{2} I^{(3)^{22}}, \quad c_{53}=M_{B}^{(3){ }^{21}}+M_{B}^{(3)^{22}}-\omega^{2}\left(n / \alpha_{2}\right) I^{(6)^{22}} \\
& c_{54}=M_{c_{1}}^{(3) 21}+M_{c_{1}}^{(3) 22}, \quad c_{55}=M_{c_{2}}^{(3) 21}+M_{c_{2}}^{(3) 22}+N_{c_{2}}^{(3)^{2}}-\omega^{2} I^{(5)^{22}}, \\
& c_{31}=M_{A_{1}}^{(2) 11}+M_{A_{1}}^{(2)^{12}}+M_{A_{1}}^{(2) 1^{21}}+N_{A_{1}}^{(1)^{3}}-\mathrm{i} \omega^{2} \lambda_{1} I^{(2)^{11}}, \\
& c_{32}=M_{A_{2}}^{(2)^{11}}+M_{A_{2}}^{(2)^{12}}+M_{A_{2}}^{(2) 1^{21}}+M_{A_{2}}^{(2) 22}+N_{A_{2}}^{(1)^{3}}-\mathrm{i} \omega^{2}\left(n / \alpha_{2}\right) I^{(2)^{22}}, \\
& c_{33}=M_{B}^{(2)^{11}}+M_{B}^{(2) 1^{12}}+M_{B}^{(2) 1^{21}}+M_{B}^{(2) 22}+N_{B}^{(1) 3^{3}}-\omega^{2}\left[I^{()^{33}}+\lambda_{1}^{2} I^{(4)^{11}}+a^{22} n^{2} I^{(4)^{22}}\right], \\
& c_{34}=M_{c_{1}}^{(2)^{11}}+M_{c_{1}}^{(2)^{12}}+M_{c_{1}}^{(2)^{21}}+M_{c_{1}}^{(2)^{21}}+N_{c_{1}}^{(1)^{3}}-\mathrm{i} \omega^{2} \lambda_{1} I^{(6)^{11}}, \\
& c_{35}=M^{(2)^{11}} c_{2}+M^{(2)^{12}} c_{2}+M_{c_{2}}^{(2)^{11}}+M_{c_{2}}^{(2)^{21}}+N_{c_{2}}^{(1)^{3}}-\mathrm{i} \omega^{2}\left(n / \alpha_{2}\right) I^{(6)^{22}} .
\end{aligned}
$$

Here

$$
\begin{gathered}
M_{A_{1}}^{(1)^{11}}=-\mathrm{i} \lambda_{1}^{2} \int_{0}^{h} C_{1111} \mu \mathrm{~d} x_{3}, \quad M_{A}^{(1)^{11}}=\mathrm{i} \lambda_{1} n \int_{0}^{h} \frac{C_{1122}}{\alpha_{2}}\left(\mu_{2}^{2}\right)^{2} \mu \mathrm{~d} x_{3}, \\
M_{B}^{(1) 1^{11}}=-\mathrm{i} \lambda_{1} \int_{0}^{h}\left[C_{1111}\left(x_{3} \lambda_{1}^{2}-b_{11}\right)+C_{1122}\left(a^{22} x_{3} n^{2}-b_{22}\right) \mu_{2}^{2}\right] \mu \mathrm{d} x_{3}, \\
M_{C_{1}}^{(1) 1^{11}}=-\lambda_{1}^{2} \int_{0}^{h} C_{1111} h_{1}^{1} \mu \mathrm{~d} x_{3}, \quad M_{C_{2}}^{(1)^{11}}=\lambda_{1} n \int_{0}^{b} \frac{C_{1122}}{\alpha_{2}} h_{2}^{2} \mu \mathrm{~d} x_{3}, \\
M_{A_{1}}^{(1)^{12}}=-n \int_{0}^{h} a^{22} C_{1212} \mu \mathrm{~d} x_{3}, \quad M_{A_{2}}^{(1)^{12}}=-\mathrm{i} \lambda_{1} \int_{0}^{h} \frac{C_{1212}}{\alpha_{2}}\left(\mu_{2}^{2}\right)^{2} \mu \mathrm{~d} x_{3}, \\
M_{B}^{(1) 1^{12}}=-\mathrm{i} \lambda_{1} \int_{0}^{h} a^{22} C_{1212}\left(\mu_{1}^{1}+\mu_{2}^{2}\right) x_{3} \mu \mathrm{~d} x_{3}, \quad M_{C_{1}}^{(1)^{12}}=-n \int_{0}^{h} C_{1212}\left(h_{1}^{1}\right)^{2} \mu \mathrm{~d} x_{3}, \\
M_{C_{2}}^{(1)^{12}}=-\mathrm{i} \lambda_{1} \int_{0}^{h} \frac{C_{1212}}{\alpha_{2}}\left(h_{2}^{2}\right)^{2} \mu \mathrm{~d} x_{3}, \\
M_{A_{1}}^{(1)^{21}}=\mathrm{i} \lambda_{1} n \int_{0}^{h} \frac{C_{1212}}{\alpha_{2}}\left(\mu_{2}^{2}\right)^{2} \mu \mathrm{~d} x_{3}, \\
M_{A_{2}}^{(1)^{21}}=-\lambda_{1}^{2} \int_{0}^{h} C_{1212}\left(\mu_{2}^{2}\right)^{4} \mu \mathrm{~d} x_{3}, \\
M_{C_{1}}^{(1)^{21}}=\mathrm{i} \lambda_{1} n \int_{0}^{h} \frac{C_{1212}}{\alpha_{2}}\left(h_{1}^{1)^{1}}\right)^{2}\left(\mu_{2}^{2}\right)^{2} \mu \mathrm{~d} x_{3}, \\
M_{C_{2}}^{(1)^{11}}=-\lambda_{1}^{2} \int_{0}^{h} \frac{\lambda_{1212}^{2}}{\alpha_{2}}\left(\mu_{1}^{1}+\mu_{2}^{2}\right) x_{3} \mu \mathrm{~d} x_{3}, \\
C_{1212}\left(h_{2}^{2}\right)^{2}\left(\mu_{2}^{2}\right)^{2} \mu \mathrm{~d} x_{3},
\end{gathered}
$$

$$
\begin{aligned}
& M_{A_{1}}^{(1)^{22}}=\mathrm{i} \lambda_{1} \int_{0}^{h} \frac{C_{1122}}{\alpha_{2}}\left(\mu_{2}^{2}\right)^{2} \mu \mathrm{~d} x_{3}, \quad M_{A_{2}}^{(1) 2^{22}}=-n \int_{0}^{h} a^{22} C_{2222}\left(\mu_{2}^{2}\right)^{4} \mu \mathrm{~d} x_{3}, \\
& M_{B}^{(1)^{22}}=-\lambda_{1} \int_{0}^{h}\left[\frac{C_{1122}}{\alpha_{2}}\left(x_{3} \lambda_{1}^{2}-b_{11}\right)+C_{2222}\left(a^{22} x_{3} n^{2}-b_{22}\right) \mu_{2}^{2}\right]\left(\mu_{2}^{2}\right)^{2} \mu \mathrm{~d} x_{3}, \\
& M_{C_{1}}^{(1) 22}=\mathrm{i} \lambda_{1} \int_{0}^{h} \frac{C_{1122}}{\alpha_{2}} h_{1}^{1}\left(\mu_{2}^{2}\right)^{2} \mu \mathrm{~d} x_{3}, \quad M_{C_{2}}^{(1) 22}=-n \int_{0}^{h} a^{22} C_{2222} h_{2}^{2}\left(\mu_{2}^{2}\right)^{2} \mu \mathrm{~d} x_{3}, \\
& M_{A_{1}}^{(2)^{11}}=\mathrm{i} \lambda_{1}^{3} \int_{0}^{h} C_{1111} x_{3} \mu \mathrm{~d} x_{3}, \quad M_{A_{2}}^{(2)}=-\lambda_{1}^{2} n \int_{0}^{h} \frac{C_{1122}}{\alpha_{2}}\left(\mu_{2}^{2}\right)^{2} x_{3} \mu \mathrm{~d} x_{3}, \\
& M_{B}^{(2) 11}=-\lambda_{1_{1}}^{2} \int_{0}^{h}\left[C_{1111}\left(x_{3} \lambda_{1}^{2}-b_{11}\right)+C_{1122}\left(a^{22} x_{3} n^{2}-b_{22}\right) \mu_{2}^{2}\right] \mu \mathrm{d} x_{3}, \\
& M_{C_{1}}^{(2)}=\mathrm{i} \lambda_{1}^{3} \int_{0}^{h} C_{1111} h_{1}^{1} x_{3} \mu \mathrm{~d} x_{3}, \quad M_{C_{2}}^{(2)}=-\lambda_{1}^{2} n \int_{0}^{h} \frac{C_{1122}}{\alpha_{2}} h_{2}^{2} x_{3} \mu \mathrm{~d} x_{3}, \\
& M_{A 1}^{(2)}{ }^{12}=\mathrm{i} \lambda_{1} n^{2} \int_{0}^{h} a^{22} C_{1212} x_{3} \mu \mathrm{~d} x_{3}, \quad M_{A_{2}}^{(2)}=-\lambda_{1}^{2} n \int_{0}^{h} \frac{C_{1212}}{\alpha_{2}}\left(\mu_{2}^{2}\right)^{2} x_{3} \mu \mathrm{~d} x_{3}, \\
& M_{B}^{(2) 1^{12}}=-\lambda_{1}^{2} n^{2} \int_{0}^{h} a^{22} C_{1212}\left(\mu_{1}^{1}+\mu_{2}^{2}\right) x_{3}^{2} \mu \mathrm{~d} x_{3}, \quad M_{C_{1}}^{(2)}=\mathrm{i} \lambda_{1} n^{2} \int_{0}^{h} a^{22} C_{1212}\left(h_{1}^{1}\right)^{2} x_{3} \mu \mathrm{~d} x_{3}, \\
& M_{C_{2}}^{(2)}=-\lambda_{1}^{2} n \int_{0}^{b} \frac{C_{1212}}{\alpha_{2}}\left(h_{2}^{2}\right)^{2} x_{3} \mu \mathrm{~d} x_{3}, \quad M_{A_{1}}^{(2)^{21}}=\mathrm{i} \lambda_{1} n^{2} \int_{0}^{h} a^{22} C_{1212} x_{3} \mu_{2}^{2} \mu \mathrm{~d} x_{3}, \\
& M_{A_{2}}^{(2){ }^{21}}=-\lambda_{1}^{2} n \int_{0}^{h} \frac{C_{1212}}{\alpha_{2}}\left(\mu_{2}^{2}\right)^{3} x_{3} \mu \mathrm{~d} x_{3}, \\
& M_{B}^{(2))^{21}}=-\lambda_{1}^{2} n^{2} \int_{0}^{h} a^{22} C_{1212}\left(\mu_{1}^{1}+\mu_{2}^{2}\right) x_{3}^{2}\left(\mu_{2}^{2}\right)^{2} \mu \mathrm{~d} x_{3}, \\
& M_{c_{1}}^{(2)^{21}}=\mathrm{i} \lambda_{1} n^{2} \int_{0}^{h} a^{22} C_{1212}\left(h_{1}^{1}\right)^{2} x_{3} \mu_{2}^{2} \mu \mathrm{~d} x_{3}, \quad M_{C_{2}}^{(2)^{21}}=-\lambda_{1}^{2} n \int_{0}^{h} \frac{C_{1212}}{\alpha_{2}}\left(h_{2}^{2}\right)^{2} x_{3} \mu_{2}^{2} \mu \mathrm{~d} x_{3}, \\
& M_{A_{1}}^{(2) 22}=\mathrm{i} \lambda_{1} n^{2} \int_{0}^{h} a^{22} C_{1122} x_{3} \mu_{2}^{2} \mu \mathrm{~d} x_{3}, \quad M_{A_{2}}^{(2) 22}=-n^{3} \int_{0}^{h} a^{22} \frac{C_{1122}}{\alpha_{2}}\left(\mu_{2}^{2}\right)^{3} x_{3} \mu \mathrm{~d} x_{3}, \\
& M_{B}^{(2) 22}=-n^{2} \int_{0}^{h} a^{22}\left[C_{1122}\left(x_{3} \lambda_{1}^{2}-b_{11}\right)+C_{2222}\left(a^{22} x_{3} n^{2}-b_{22}\right) \mu_{2}^{2}\right] \mu_{2}^{2} \mu \mathrm{~d} x_{3}
\end{aligned}
$$

C. OSSADZOW ET AL.

$$
\begin{aligned}
& M_{C_{1}}^{(2)^{22}}=\mathrm{i} \lambda_{1} n^{2} \int_{0}^{h} a^{22} C_{1122} h_{1}^{1} x_{3} \mu_{2}^{2} \mu \mathrm{~d} x_{3}, \quad M_{C_{2}}^{(2)^{22}}=-n^{3} \int_{0}^{h} a^{22} \frac{C_{1122}}{\alpha_{2}} h_{2}^{2} x_{3} \mu_{2}^{2} \mu \mathrm{~d} x_{3}, \\
& M_{A_{1}}^{(3) 11}=-\lambda_{1}^{2} \int_{0}^{h} C_{1111} h_{1}^{1} \mu \mathrm{~d} x_{3}, \quad M_{A_{2}}^{(3))^{11}}=-\mathrm{i} \lambda_{1} n \int_{0}^{h} \frac{C_{1122}}{\alpha_{2}}\left(\mu_{2}^{2}\right)^{2} h_{1}^{1} \mu \mathrm{~d} x_{3}, \\
& M_{B}^{(3)}{ }^{11}=-\mathrm{i} \lambda_{1} \int_{0}^{h}\left[C_{1111}\left(x_{3} \lambda_{1}^{2}-b_{11}\right)+C_{1122}\left(a^{22} x_{3} n^{2}-b_{22}\right) \mu_{2}^{2}\right] h_{1}^{1} \mu \mathrm{~d} x_{3}, \\
& M_{C_{1}}^{(3)^{11}}=-\lambda_{1}^{2} \int_{0}^{h} C_{1111}\left(h_{1}^{1}\right)^{2} \mu \mathrm{~d} x_{3}, \quad M_{C_{2}}^{(3)^{11}}=-\lambda_{1} n \int_{0}^{h} \frac{C_{1122}}{\alpha_{2}} h_{1}^{1} h_{2}^{2} \mu \mathrm{~d} x_{3}, \\
& M_{A_{1}}^{(3)}=-n^{2} \int_{0}^{h} a^{22} C_{1212} h_{1}^{1} \mu \mathrm{~d} x_{3}, \quad M_{A_{2}}^{(3)^{12}}=-\mathrm{i} \lambda_{1} n \int_{0}^{h} \frac{C_{1212}}{\alpha_{2}}\left(\mu_{2}^{2}\right)^{2} h_{1}^{1} \mu \mathrm{~d} x_{3}, \\
& M_{B}^{(3)^{12}}=-\mathrm{i} \lambda_{1} \int_{0}^{h} a^{22} C_{1212}\left(\mu_{1}^{1}+\mu_{2}^{2}\right) \mu \mathrm{d} x_{3}, \quad M_{C_{1}}^{(3)^{12}}=-n^{2} \int_{0}^{h} a^{22} C_{1212}\left(h_{1}^{1}\right)^{3} \mu \mathrm{~d} x_{3}, \\
& M_{C_{2}}^{(3)}=-\mathrm{i} \lambda_{1} n \int_{0}^{h} \frac{C_{1212}}{\alpha_{2}}\left(h_{2}^{2}\right)^{2} h_{1}^{1} \mu \mathrm{~d} x_{3}, \quad M_{A_{1}}^{(3))^{21}}=\mathrm{i} \lambda_{1} n \int_{0}^{h} \frac{C_{1212}}{\alpha_{2}} \mu_{2}^{2} h_{2}^{2} \mu \mathrm{~d} x_{3}, \\
& M_{A_{2}}^{(3)^{21}}=-\lambda_{1}^{2} \int_{0}^{h} C_{1212}\left(\mu_{2}^{2}\right)^{3} h_{2}^{2} \mu \mathrm{~d} x_{3}, \quad M_{B}^{(3){ }^{21}}=-\lambda_{1}^{2} n \int_{0}^{h} \frac{C_{1212}}{\alpha_{2}}\left(\mu_{1}^{1}+\mu_{2}^{2}\right) \mu_{2}^{2} h_{2}^{2} x_{3} \mu \mathrm{~d} x_{3}, \\
& M_{C_{1}}^{(3)^{21}}=\mathrm{i} \lambda_{1} n \int_{0}^{h} \frac{C_{1212}}{\alpha_{2}}\left(h_{1}^{1}\right)^{2} \mu_{2}^{2} \mu \mathrm{~d} x_{3}, \quad M_{C_{2}}^{(3)^{21}}=-\lambda_{1}^{2} \int_{0}^{h} C_{1212}\left(h_{2}^{2}\right)^{3} \mu_{2}^{2} \mu \mathrm{~d} x_{3}, \\
& M_{A_{1}}^{(3)^{22}}=\mathrm{i} \lambda_{1} n \int_{0}^{h} \frac{C_{1122}}{\alpha_{2}}\left(\mu_{2}^{2}\right)^{2} h_{2}^{2} \mu \mathrm{~d} x_{3}, \quad M_{A_{2}}^{(3) 22}=-n^{2} \int_{0}^{h} a^{22} C_{2222}\left(\mu_{2}^{2}\right)^{3} h_{2}^{2} \mu \mathrm{~d} x_{3}, \\
& M_{B}^{(3) 22}=-n \int_{0}^{h}\left[\frac{C_{1122}}{\alpha_{2}}\left(x_{3} \lambda_{1}^{2}-b_{11}\right)+C_{2222}\left(a^{22} x_{3} n^{2}-b_{22}\right) \mu_{2}^{2}\right] \mu_{2}^{2} h_{2}^{2} \mu \mathrm{~d} x_{3}, \\
& M_{C_{1}}^{(3) 22}=\mathrm{i} \lambda_{1} n \int_{0}^{h} \frac{C_{1122}}{\alpha_{2}} h_{1}^{1} h_{2}^{2} \mu_{2}^{2} \mu \mathrm{~d} x_{3}, \quad M_{C_{2}}^{(3) 22}=-n^{2} \int_{0}^{h} a^{22} C_{2222}\left(h_{2}^{2}\right)^{2} \mu_{2}^{2} \mu \mathrm{~d} x_{3}, \\
& N_{C_{1}}^{(3)^{1}}=\int_{0}^{h} C_{1313}\left(h_{1,3}^{1}+b_{1}^{1} h_{1}^{1}\right)^{2} \mu \mathrm{~d} x_{3}, \quad N_{C_{2}}^{(3)^{2}}=\int_{0}^{h} C_{2323}\left(\mu_{2}^{2} h_{2,3}^{2}+b_{2}^{2} h_{2}^{2}\right)^{2} \mu \mathrm{~d} x_{3}
\end{aligned}
$$

